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Summary

� To what degree plant ecosystems thermoregulate their canopy temperature (Tc) is critical to

assess ecosystems’ metabolisms and resilience with climate change, but remains controversial,

with opinions from no to moderate thermoregulation capability.
� With global datasets of Tc, air temperature (Ta), and other environmental and biotic vari-

ables from FLUXNET and satellites, we tested the ‘limited homeothermy’ hypothesis (indi-

cated by Tc & Ta regression slope < 1 or Tc < Ta around midday) across global extratropics,

including temporal and spatial dimensions.
� Across daily to weekly and monthly timescales, over 80% of sites/ecosystems have slopes

≥1 or Tc > Ta around midday, rejecting the above hypothesis. For those sites unsupporting

the hypothesis, their Tc–Ta difference (ΔT) exhibits considerable seasonality that shows nega-

tive, partial correlations with leaf area index, implying a certain degree of thermoregulation

capability. Spatially, site-mean ΔT exhibits larger variations than the slope indicator, suggest-

ing ΔT is a more sensitive indicator for detecting thermoregulatory differences across biomes.

Furthermore, this large spatial-wide ΔT variation (0–6°C) is primarily explained by environ-

mental variables (38%) and secondarily by biotic factors (15%).
� These results demonstrate diverse thermoregulation patterns across global extratropics,

with most ecosystems negating the ‘limited homeothermy’ hypothesis, but their thermo-

regulation still occurs, implying that slope < 1 or Tc < Ta are not necessary conditions for plant

thermoregulation.

Introduction

Whether plant ecosystems can thermoregulate their canopy tem-
perature (Tc) in response to the changing environment remains a
central question in plant ecology and ecophysiology (Doughty &
Goulden, 2008; Pau et al., 2018; Lin et al., 2020; Choury et al.,
2022), with increasing relevance due to global climate change. Tc

is a key state variable tightly regulating canopy metabolism of
photosynthesis, respiration, and transpiration (Farquhar et al.,
1980; Bernacchi et al., 2013; Lombardozzi et al., 2015), which
further impacts the growth and health of individual plants, as
well as regional to global-scale carbon and water cycles (Lloyd &
Farquhar, 2008; Dong et al., 2017; Still et al., 2021). Further-
more, because of the hump-shaped relationship between gross
primary productivity (GPP) and Tc (e.g. Collier et al., 2017; Slot
& Winter, 2017), as well as the exponential relationship between

Tc and plant respiration, changes in Tc in concert with global
warming will strongly affect net terrestrial carbon uptake. The
metabolic and hydrologic impacts of climate warming are thus
strongly related to plant canopy thermoregulation, which deter-
mines the directional change and magnitude of Tc deviations
from optimal temperatures for GPP (Michaletz et al., 2016;
Blonder & Michaletz, 2018; Huang et al., 2019).

Plant thermoregulation refers to the maintenance of relatively
stable Tc in the face of variable air temperature (Ta). It could result
from a wide suite of structural (regulating radiation absorption and
convection), morphological (regulating boundary conductance),
and physiological (e.g. stomatal behavior and regulating transpira-
tion) traits, and can be quantified in two ways: the regression slope
of Tc vs Ta as well as the difference between Tc and Ta (ΔT)
(Box 1). Specifically, it has been hypothesized that if thermoregula-
tion occurs, (1) Tc will change more slowly than Ta over time,

1004 New Phytologist (2023) 238: 1004–1018 � 2022 The Authors

New Phytologist� 2022 New Phytologist Foundationwww.newphytologist.com

Research

https://orcid.org/0000-0001-8806-1307
https://orcid.org/0000-0001-8806-1307
https://orcid.org/0000-0002-8295-4494
https://orcid.org/0000-0002-8295-4494
https://orcid.org/0000-0001-6238-2479
https://orcid.org/0000-0001-6238-2479
https://orcid.org/0000-0002-5061-2385
https://orcid.org/0000-0002-5061-2385
https://orcid.org/0000-0002-4899-3158
https://orcid.org/0000-0002-4899-3158
https://orcid.org/0000-0001-8991-3970
https://orcid.org/0000-0001-8991-3970
mailto:jinwu@hku.hk
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fnph.18632&domain=pdf&date_stamp=2022-12-10


leading the Tc vs Ta regression slope to be < 1 (Fig. S1; Dong
et al., 2017; Blonder & Michaletz, 2018); (2) Tc is cooler than Ta

when Ta exceeds some threshold, typically during high net radia-
tion conditions (e.g. close to midday; Mahan & Upchurch, 1988).
This is also called the ‘limited homeothermy’ hypothesis. Previ-
ously, this hypothesis was primarily tested using limited leaf-scale
data in experimental conditions, such as glasshouse or gas change
chambers, or on well-watered crop species (Still et al., 2019; Farella
et al., 2022). However, whether such ‘limited homeothermic’
behaviors can be extended beyond the scale of individual leaves
and whether it varies among different plant functional types
(PFTs) around the world remains unknown.

In recent years, increasing observations from field surveys,
experiments, eddy covariance (EC), and satellite remote sensing
have been used to assess the spatial and temporal variability in Tc

(Slot & Winter, 2017; Huang et al., 2019; Guo et al., 2022).
However, debates remain, with diverse opinions ranging from no
to moderate plant thermoregulation capability (Michaletz et al.,
2016; Blonder & Michaletz, 2018; Drake et al., 2020). For
example, the study by Drake et al. (2020) leveraged continuous
measurements of Tc and Ta in Eucalyptus parramattensis tree
canopies using a whole-tree chamber measurement technique
and performed a series of analyses to assess Tc vs Ta relationships
across a wide range of timescales from hourly to daily and weekly.
Their results showed that Tc and Ta are tightly and linearly corre-
lated, with their regression slopes close to 1 (poikilothermy, Tc

changes almost at the same pace as Ta), regardless of the timescale
analyzed, implying a surprising lack of thermoregulation of tree
canopies across timescales, leading to the characterization of
‘cold-blooded forests in a warming world’ (Cavaleri, 2020).

However, previous studies have observed that plants exhibit
thermoregulation capability, both temporally and spatially (Zeng
et al., 2017; Forzieri et al., 2020). Based on an integration of glo-
bal satellite-observed greenness and earth system models, the
impact of the changing plant canopy structure on global-scale cli-
mate was assessed over the past three decades (Zeng et al., 2017).
This assessment indicated that the greening of the Earth (as indi-
cated by the increase in leaf area index, LAI; Zhu et al., 2016)

helped to cool the Earth’s surface temperature by 0.1°C, account-
ing for 20% of background global warming from 1982 to 2012,
primarily due to the cooling benefit associated with the LAI-
induced transpiration increase. Another satellite-based assessment
also demonstrated that increasing LAI over decades had decreased
sensible heat on vegetated surfaces, which is positively correlated
with Tc–Ta difference (ΔT) (Forzieri et al., 2020). These results
imply that plants might not be as ‘cold-blooded’ as has sometimes
been suggested (Cavaleri, 2020), as they can at least change their
canopy structure to adapt to the warming planet.

Spatially, it has been widely shown that different PFTs and
their specific key biophysical attributes (e.g. physiological traits
and LAI) can often result in large differences in ΔT at the canopy
and ecosystem scale (Leuzinger & Körner, 2007; Peng et al.,
2014; Duveiller et al., 2018). For example, even within the same
climate zone with comparable background climates, forests can
cool down Tc by c. 1.1°C more than their neighboring croplands
and grasslands (Peng et al., 2014). Similar ΔT contrasts are also
frequently observed in unhealthy vs healthy vegetation (Thakur
et al., 2021). Although ambient environments such as Ta and/or
biotic variables such as LAI have been previously used to interpret
spatial variability in ΔT (Lian et al., 2017), whether other abiotic
(e.g. wind speed and relative humidity (RH)) and biotic (e.g.
PFT-specific physiological traits) factors that affect canopy tran-
spiration also play a role in mediating Tc remains largely under-
explored (Jones, 2013; Still et al., 2021; Guo et al., 2022),
especially on a continental scale. Thus, a comprehensive assess-
ment of large-scale variability in plant thermoregulation occur-
rence and capability is critically needed.

To resolve the above seemingly contrasting views and compre-
hensively evaluate the occurrence and degree of plant thermoreg-
ulation among various ecosystems, we addressed the following
questions: (1) Across timescales (i.e. daily to weekly and
monthly), to what extent does the ‘limited homeothermy’
hypothesis (i.e. slopes < 1 or midday Tc < Ta) hold? (2) Do its
opposites (i.e. slope = 1 or midday Tc > Ta) imply no ther-
moregulation capacity? (3) Across global vegetated landscapes, do
plant ecosystems display large spatial variation in ΔT and slope?
and (4) What are the underlying biophysical mechanisms of spa-
tial variability in ΔT and slope? To address these questions, we
leveraged global datasets of Tc, Ta, other environmental variables
derived from FLUXNET, Moderate Resolution Imaging Spec-
troradiometer (MODIS) satellite, and ERA5-Land (ERA5L)
reanalysis data, and biotic variables approximated by satellite-
derived LAI and PFTs maps, to evaluate the Tc vs Ta relation-
ships on both temporal and spatial dimensions. Furthermore, we
used generalized linear models and variance decomposition
approaches to assess the relative effect of abiotic and biotic factors
on the global plant thermoregulation variability.

Materials and Methods

Materials

Three types of data were used in this study, including (1)
FLUXNET2015 (or EC) dataset of carbon and water fluxes

Box 1 Definitions of different thermoregulation patterns

Both canopy temperature (Tc) and air temperature (Ta) vary with
time. The slope of Tc vs Ta (slope ¼ ∂Tc=∂Ta) describes their relative
rates of change. The difference between Tc vs Ta (ΔT ¼ Tc�Ta)
describes their relative magnitudes.
� Poikilothermy occurs when Tc has almost the same rate of
change as Ta (slope ≈ 1; a conservative range of 0.9–1.1 was used;
Blonder & Michaletz, 2018).
� Megathermy occurs when Tc changes faster than Ta (slope >
1.1).
� True homeothermy occurs when Tc is nearly constant despite the
variation in Ta (slope = 0). This is analogous to homeostasis as
defined in the animal physiology literature (Billman, 2020).
Limited homeothermy occurs (1) when Tc changes slower than Ta
(slope < 0.9) or (2) Tc is cooler than Ta at midday (Tc < Ta).
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and meteorological variables; (2) globally available satellite
products of land surface temperature (LST), land cover types,
GPP, LAI, and PFTs; and (3) ERA5L products of key mete-
orological variables. Details of variables included in each data
type, associated spatial/temporal resolutions, and access links
are summarized in Table 1. FLUXNET2015 provides an
important benchmark to assess temporal and spatial variation
in Tc vs Ta relationships at the site scale, while the combined
dataset of MODIS LST and ERA5L Ta provides a regional-
to continental-scale assessment of Tc vs Ta relationships.
Notably, EC- and satellite-based temperatures are surface
temperatures of ecosystems, where plant canopies dominate if
we restrict ecosystems/regions to pure vegetation areas during
the growing seasons with dense LAI (threshold of
> 2.0 m2 m−2, see details in ‘Canopy temperature (Tc)’ in
the Materials and Methods section). We found good agree-
ment between EC- and satellite-derived Tc (Fig. S2). Other
environmental variables from ERA5L together with satellite-
based PFTs and LAI were used to explore the proximate
mechanisms underlying temporal and spatial variations in
plant Tc. The detailed descriptions and relevant preprocessing
of FLUXNET, satellite, and reanalysis data can be found in
Methods S1, 1.1–1.3.

Tropical (20°N–20°S) and wetland regions (based on the
IGBP classes) were excluded for the following reasons. The
tropical regions were excluded because of the high cloud con-
tamination of satellite data (Fig. S3) and the large uncertainty
of the reanalysis data (Muñoz-Sabater et al., 2021). We also
present the EC-based results of tropical Tc vs Ta in Fig. S4,
which are unimpacted by the above uncertainty, and they show
very comparable findings to those derived from extratropical
EC sites. The wetland regions were excluded because the Tc

remote sensing products are often contaminated by underlying

water bodies, and that can hinder accurate measurements
(Wang et al., 2019).

Methods

Our data analysis flowchart is summarized in Fig. S5 and
includes four parts. First, to minimize the nongrowing season
effect on the Tc vs Ta relationships, we focused our data anal-
ysis only on the growing season. Second, we extracted Tc

from available EC and satellite measurements. Third, with
paired measurements of Tc and Ta from either EC or satel-
lite/ERA5L measurements, we analyzed the Tc vs Ta relation-
ships in the temporal and spatial dimensions. Lastly, we used
generalized linear modeling and variance decomposition
approaches to explore the drivers of global plant thermoregu-
lation variations.

Extraction of growing season data The growing season, defined
as the period between the start (SOS) and the end (EOS) of the
growing season each year, was extracted from global satellite phe-
nology products (MODIS MCD12Q2) of 1 km resolution
(Gray et al., 2019). Specifically, SOS and EOS were calculated
based on the seasonal cycle of enhanced vegetation index (Gray
et al., 2019). To assure high data quality, we first used the quality
assurance (QA) band to filter out low-quality pixels and gap-
filled empty pixels in the time series with multiple-year averages.
For EC sites, their SOS and EOS were calculated as averages
within a 3 × 3 pixel window centering around each site. Finally,
all the EC, satellite, and ERA5L data outside of the growing sea-
son were filtered out.

Deriving Tc from EC and satellite measurements In this study,
we focused on Tc vs Ta relationship during the time window

Table 1 Summary of the eddy covariance (EC) data, remote sensing data, and reanalysis data used in this study.

Variables Definition Unit
Resolutions (spatial/
temporal) Data source References

Tc_Aero Aerodynamic canopy temperature from EC data °C Site/hourly FLUXNET Pastorello et al. (2020)
Tc_LW Radiative canopy temperature from EC data °C Site/hourly FLUXNET
Ta_EC Air temperature from EC data °C Site/hourly FLUXNET
RH Relative humidity from EC data – Site/hourly FLUXNET
u Wind speed from EC data m s−1 Site/hourly FLUXNET
P Precipitation from EC data mm Site/hourly FLUXNET
PAR Photosynthetically active radiation from EC data W m−2 s−1 Site/hourly FLUXNET
Tc_MODIS MODIS-derived canopy temperature °C 1 km/8 d MO(Y)D11A2 Wan (2014)
ESA-

worldcover

Global land cover product at 10 m resolution for
2020

– 10 m/yearly ESA/
WorldCover

Zanaga et al. (2021)

IGBP map PFT classification map – 1 km/yearly MCD12Q1 Friedl & Sulla-Menashe
(2019)

SOS Start of the growing season DOY 500 m/yearly MCD12Q2 Gray et al. (2019)
EOS End of the growing season DOY 500 m/yearly MCD12Q2
LAI Leaf area index m−2 m−2 500 m/4 d MCD15A3H Myneni et al. (2015)
Ta_ERA5L Near-surface air temperature from ERA5Land oC 9 km/monthly ERA5_Land Muñoz-Sabater

et al. (2021)
ϵ Ecosystem surface emissivity – 1 km/8 d MOD21A2 Hulley et al. (2016)
Wcov Waterbody coverage % 30 m/yearly JRC/GSW1_3 Pekel et al. (2016)
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(10:00–14:00) close to midday for three reasons. First, this is con-
sistent with previous studies, as the night-time Tc vs Ta relationship
can be driven mainly by physical processes like longwave radiative
cooling (although stomata still can open and regulate Tc vs Ta rela-
tionship at night, the extent of which remains largely uncertain;
Sadok & Jagadish, 2020) and thus may not sufficiently reflect a
plant canopy’s thermoregulation capability (Mahan & Upchurch,
1988; Dong et al., 2017). Second, the Tc vs Ta relationship at mid-
day can best reflect thermoregulation differences between species or
ecosystems since Tc variability induced by plant traits normally
peaks at this time (Guo et al., 2022). Third, this maintains consis-
tency between EC and satellite observations, as MODIS satellites
measure LST at c. 10:30 and 13:30 local time.

Canopy temperature (Tc) Satellite-based Tc. Satellite-based Tc

was derived following three steps. Step 1 is the processing of
MODIS LST products. The mean LST of day-time observations
(at c. 10:30 and 13:30 local time) from the 8-d composited pro-
duct (MOD&MYD11A2) was calculated to indicate satellite Tc.
Low-quality pixels due to cloud contamination or emissivity esti-
mation error were first filtered out with the product’s QA band,
and then, the missing pixels were gap-filled following the method
by Zhou et al. (2021), which fills missing values based on the
temporal information and has been demonstrated to have high
accuracy.

Step 2 is filtering out all nonvegetation areas. For this, we first
used the 10 m ESA WorldCover 2020 land cover map to gener-
ate the 1-km vegetation pixel fraction map following the method-
ology used in previous studies (Poulter et al., 2015; Duveiller
et al., 2018), in which vegetation pixel fraction is defined as the
ratio between vegetation pixels (tree, shrubland, grassland, and
cropland) and all the pixels within each 1 km grid. We then fil-
tered out all the pixels with vegetation pixel fraction < 95%.

Step 3 is filtering out sparse-vegetation areas (such as open
shrubland with pure vegetation pixels but sparse-vegetation den-
sity) to minimize the effect of soil on LST. For this, we extracted

the global LST, Ta, and LAI (from the MCD15A3H product)
during the peak growing season in which the environmental con-
ditions are similar for each pixel, and ΔT difference among pixels
is mainly caused by soil fraction. We then plotted the points on a
ΔT-LAI space and found that ΔT is sharply decreased with LAI
increase (i.e. soil fraction decrease) when LAI is below 2 m2 m−2

(Fig. S6a). Above 2 m2 m−2, ΔT only slightly decreases with
LAI. However, after removing the effect of evapotranspiration
(see Method S2), ΔT remains almost constant with LAI increases
when LAI > 2 m2 m−2 (Fig. S6b). The sensitivity analysis
showed Tc vs Ta relationships were almost identical for LAI
changes from 2.0 to 3.0 m2 m−2 (Fig. S7). We finally selected
the LAI threshold of 2.0 m2 m−2 and filtered out pixels with
mean growing season LAI < 2.0 m2 m−2 and observations at the
early or late growing season when corresponding LAI is
< 2.0 m2 m−2. Furthermore, for the time-series data, extreme
ΔT values (< 5 percentiles or > 95 percentiles) and correspond-
ing LST and Ta were also filtered out as they were likely to be
contaminated by nonvegetated backgrounds (Still et al., 2021).
Following these three steps, we derived the final LST maps of
pure and dense vegetated canopies on the large scale, which were
subsequently used for analyzing the Tc vs Ta relationships.

EC-based Tc. There are two widely used methods for deriving
Tc from EC measurements, namely aerodynamic- (deriving aero-
dynamic Tc, Tc_aero; Eqn 1) and radiative-based (deriving long-
wave Tc, Tc_LW; Eqn 2) approaches (Doughty & Goulden,
2008; Campbell & Norman, 2012; Jones, 2013). In our analysis,
we selected Tc_aero to indicate site-level Tc due to more Tc_aero

data (146 sites remain after removing sparse-vegetation sites;
Fig. 1) available than Tc_LW (94 sites) in FLUXNET2015, which
ensured sufficient samples for each PFT. As an independent eval-
uation, we cross-compared the EC-derived Tc_aero, Tc_LW, and
corresponding Tc vs Ta relationships. The results show that
Tc_aero are highly consistent with Tc_LW (bias = 0.70, Pearson
correlation = 0.93), and especially, when regressed against Ta,

Fig. 1 Distribution of the flux sites from FLUXNET2015 shown as red circles (n = 146 sites including 965 site-year observations) world-wide. Location of
each sampling site (a) on latitude and longitude grid and (b) on classic Whittaker Biome Classification by climate.
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Tc_aero shows consistent patterns with Tc_LW, which is calculated
completely independent of Ta (Fig. S8).

T c_aero ¼ u

u�ð Þ2 þ 6:2u��2=3

 !
� H

cpρa

� �
þ T a Eqn 1

T c_LW ¼ 1

ϵσ
LWcanopy� 1�ϵð ÞLWsky

� �� �1=4
Eqn 2

where u is the horizontal wind speed (m s−1), u* is the friction
velocity (m s−1), H is the sensible heat flux (W m−2), cp is the
specific heat capacity of air (= 29.3 J mol−1 K−1), ρa is the den-
sity of wet air (kg m3), ϵ is the emissivity (unitless) derived from
MODIS emissivity product (MOD21A2), σ is the Stefan–Boltz-
mann constant (= 5.67 × 10−8 W m−2 K−4), LWcanopy is the
upward longwave radiation from the canopy surface (W m−2),
and LWsky is the downward longwave radiation from the sky
(W m−2).

Matching the ERA5L Ta to the LST imaging time The imag-
ing time of MODIS LST for different regions can differ by
> 2 h across the globe (Fig. S9), which will lead to inaccurate
comparisons of Tc and Ta if ignored. To avoid this, we matched
the time between ERA5L Ta and MODIS LST pixel by pixel
through three steps. First, we extracted the imaging time of LST
of the Terra and Aqua sensors globally (Fig. S9; original accuracy:
0.1 h), and approximated them to the nearest half and hour.
Second, we transformed the ERA5L Ta data from UTC to local
solar time and then resampled Ta data from hourly to half-hourly
by linear interpolation. Third, we paired the ERA5L Ta data with
LST data based on their time labels pixel by pixel.

Assessing Tc vs Ta relationships To answer our Q1 (across daily
to weekly and monthly timescales, to what extent does the ‘lim-
ited homeothermy’ hypothesis hold (i.e. Tc vs Ta slope < 1 and
midday Tc < Ta, Box 1)), we assessed Tc vs Ta relationships
based on temporal-scale regression. The regression slope
(∂T c=∂T a), originally defined in Mahan & Upchurch (1988)
and expanded in Michaletz et al. (2016) and Drake et al. (2020),
has been widely used because it has clear implications for plant
thermoregulation (Box 1). In addition to the slope, the midday
(Tc–Ta) difference was also used. It was hypothesized that under
sufficiently high net radiation situations (e.g. midday), a suffi-
ciently high transpiration rate would help cool Tc below Ta (i.e.
Tc < Ta at midday) to maintain Tc closer to the optimal photo-
synthesis temperature and avoid damaging temperature extremes
(Linacre, 1964; Mahan & Upchurch, 1988; Blonder et al.,
2020).

We conducted a temporal evaluation of the Tc vs Ta relation-
ships at the EC site level covering the timescale of daily (i.e. mea-
surements aggregated to daily averages), weekly, and monthly
(i.e. daily averages are aggregated to weekly and monthly mean)
observations. There are two reasons for covering different time-
scales. First, the degree of the coupling between meteorological
variables (e.g. temperatures) is often affected by timescales

(Novick et al., 2016), and Tc vs Ta relationship may also be
affected by this but remains unexplored. Second, the different
timescale analyses can help assess the consistency of results from
the measurements with different temporal resolutions, such as
ground-based (flux site: sub-daily) and satellite-based (weekly to
monthly) observations. For each satellite pixel, a single slope
across all months over the 10 yr was calculated.

To answer our Q2 (Do the opposites of limited homeothermy
hypothesis (i.e. slope = 1; midday Tc > Ta) imply no thermoreg-
ulation capability?), we conducted two analyses. First, to explore
whether slope ≥ 1 is equal to no thermoregulation, we focused
on the temporal partial correlations between plant structure vari-
able (LAI), climate, and ΔT. We expected that if ΔT fluctuates
nonrandomly following certain seasonal patterns, and these pat-
terns are related to the intrinsic seasonal change in the plants such
as structural changes measured by LAI, this would suggest that
plants do exhibit thermoregulation across the seasonal timescale,
even if the slopes are ≥ 1. Specifically, we plotted the seasonal
pattern of ΔT for each site and performed time-series random-
ness analysis (with the ‘runs.test’ R package; Gibbons & Chakra-
borti, 2014) to assess whether ΔT variability is random across the
growing season. Additionally, we also conducted a partial correla-
tion analysis between ΔT and LAI phenology for each site (partial
correlation analysis was selected to minimize the impact of high
correlation among LAI phenology and environmental variables,
such as photosynthetically active radiation (PAR) and precipita-
tion, Fig. S10), and then calculated the percentage of global sites
that showed significant partial correlations between ΔT seasonal-
ity and LAI phenology.

Second, to explore whether midday Tc > Ta implies no ther-
moregulation, we compared the relationship between Ta, Tc, and
soil temperature (Ts, no thermoregulation capacity) based on the
Breathing Earth System Simulator (BESS) model simulation
(Ryu et al., 2011) following the method of Guo et al. (2022).
Notably, Ts was simulated at the same conditions as the canopies.
We expected that if thermoregulation occurs, Tc will exhibit
obvious variability among the different trait combinations.
Meanwhile, since the soil surface has no thermoregulation, we
would also expect that Tc will be cooler than Ts.

To answer our Q3 (Across global vegetated landscapes, do
plant canopies display large spatial variation in ΔT?), we assessed
how ΔT varied across global vegetated landscapes. Specifically,
we calculated ΔT for each EC site/satellite pixel over entire grow-
ing seasons and then derived the mean and standard deviation of
ΔT for each biome type.

Exploring the drivers of global variation in plant thermoregula-
tion To answer our Q4 (What are the underlying biophysical
mechanisms of spatial variability in ΔT and slope?), we used gen-
eralized linear models. In this analysis, nine abiotic and biotic fac-
tors from FLUXNET, satellite, or reanalysis product (Table 1),
including Ta, elevation, wind speed (u), RH, vapor pressure defi-
cit (VPD), solar radiation (PAR), LAI, precipitation (P), and
PFTs that show direct linkages with plant energy balance, were
used as the explanatory variables. To minimize collinearity
among these factors, we calculated their pairwise Pearson
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correlation coefficients and found that VPD was highly correlated
with Ta (r = 0.68) and RH (r = 0.72). We thus removed VPD
from the following analysis. The remaining variables exhibited
Pearson correlations of r < 0.7 (Fig. S11).

This analysis was conducted for both EC and satellite data,
including four steps. First was variable normalization. All vari-
ables were standardized using the Z-score approach (Garcı́a-
Palacios et al., 2018). Second, the standardized variables were
used to build the generalized linear models. In the initial model
analysis, all abiotic variables, biotic variables, and interactions
between abiotic and biotic factors were considered. The interac-
tions included 10 one-by-one combinations (i.e. Ta/P/PAR/ele-
vation/RH by LAI/PFTs; the interaction between wind speed
and LAI/PFTs was excluded due to lacking obvious linkage
among them; Iio et al., 2014; Fang et al., 2019). Third was
model optimization and validation. We used the Akaike informa-
tion criterion (AIC) to select the optimal model (‘step’ function
in R), with smaller AICs indicating better models (Zuur et al.,
2009). As a result, the eight independent factors (Ta, elevation,
wind speed, P, RH, PAR, LAI, and PFT) and six interactions
(Ta/P/PAR by LAI/PFT) were identified and used in the final
model (Table S1). Thereafter, we checked the homogeneity and
normality of the model residuals to validate the model assump-
tions (Figs S12, S13). Finally, we used the variance decomposi-
tion method (Garcı́a-Palacios et al., 2018) to assess the effect of
each factor on ΔT and slope variability.

Results

Assessing the occurrence of limited thermoregulation
behaviors across temporal scales

Using the slope indicator, plant ecosystems show diverse ther-
moregulation strategies globally (from homeothermic to poikilo-
thermic and megathermic), while midday Tc is consistently
higher than Ta, disagreeing with the homeothermic hypothesis as
originally proposed by Mahan & Upchurch (1988). Specifically,
our results from both EC and satellite measurements show that
Tc and Ta are tightly and linearly correlated across all the time-
scales examined, and slope indicators for most global vegetated
sites/areas varied from 0.7 to 1.3 (Figs 2, 3). For the EC-derived
relationship between Tc and Ta, we observed that the slope indi-
cator of most EC sites is > 0.9 (i.e. poikilothermic or megather-
mic), including 95% of all sites on the daily timescale, 94% of
sites on the weekly timescale, and 94% of sites on the monthly
timescale (Fig. 2). Meanwhile, among these analyses, we also
observed very high predictive powers of Ta for explaining Tc vari-
ability, with an average R2 of 0.94 for daily, 0.95 for weekly, and
0.95 for monthly data (Fig. 2). When moving from the EC site-
scale analysis to satellite global-scale analysis, global vegetated
areas have a mean slope of 0.97 with 68% > 0.9 (Fig. 3b), and
the amount of Ta explaining Tc variability across time is 0.83
(Fig. 3c).

From the regression panels (Figs 2, 3a), almost all the scatter
points are located above the 1 : 1 line, indicating midday Tc is
generally warmer than surrounding air, which disagrees with the

original limited homeothermy hypothesis that argues midday Tc

is cooler than Ta (Mahan & Upchurch, 1988).

The opposites of limited homeothermic conditions

Our results show that for the sites with a slope ≥ 1, their ΔT fol-
lows certain patterns rather than varying randomly over the grow-
ing seasons (Fig. 4). Specifically, ΔT displays a tight correlation
with climate and LAI seasonality (Fig. S10). When removing the
site-climate seasonality effect, 84% of global EC sites show signif-
icant negative partial correlations of LAI phenology on ΔT sea-
sonality (Fig. 4b), even for the sites with slope close to 1 (Fig. 4c,
d; traditionally considered as no thermoregulation). In other
words, ΔT declines as LAI increases at the seasonal timescale for
most sites. This indicates that passive and structurally driven
plant thermoregulation can vary considerably over the seasons for
most global vegetated sites/areas, and LAI (together with climate)
seasonality explains the observed seasonal thermoregulation varia-
tions.

We compared the differences between Tc, Ta, and Ts based on
simulations of the BESS model (Fig. 5). Regardless of back-
ground climate and PFTs, our results show that Tc is consistently
warmer than Ta but cooler than Ts at midday of the peak growing
season. This indicates that plant ecosystems still exhibit ther-
moregulation capability when Tc > Ta at midday, as they are
cooler than objects without thermoregulation (soil surface). Fur-
thermore, our simulated results show that different plant species
(represented by the different trait combinations) exhibit different
Tc in the same environment, with a lower ΔT indicating higher
transpiration cooling and thus higher thermoregulation capacity.
These results together demonstrate that traditional widely used
standards (i.e. slope < 1 or midday Tc < Ta) are sufficient but
not necessary conditions for thermoregulation, since thermoregu-
lation still can occur even when the slope > 1 or midday
Tc > Ta.

Assessing Tc vs Ta relationships across global vegetated
landscapes

Regardless of the use of either site-level EC or larger scale satellite
datasets, our results consistently show that vegetated ecosystems
display considerable thermoregulation variations across global
vegetated sites and PFTs (Figs 3, 6, 7). Like the slope indicator
(Fig. 3), ΔT also displays considerable spatial variability in the
range of 0–6°C (Fig. 6a,b), implying thermoregulation differ-
ences globally. When aggregating the value from each site or pixel
to the PFT level, both ΔT and slope display considerable varia-
tions among PFTs (Fig. 7). Specifically, savanna, shrubland,
grassland, and cropland generally exhibit higher ΔT than broad-
leaf, needleleaf, and mixed forests (Fig. 7a,b), implying forest
ecosystems may have higher thermoregulation capability than the
other vegetated ecosystems.

Meanwhile, slope indicators also exhibit a significant differ-
ence between PFTs (Fig. 7c,d), but their variance is smaller than
that of ΔT, as indicated by the coefficient of variance (cv) of ΔT
(cv = 0.25; Fig. 7b) being three times that of slope indicators
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(cv = 0.08; Fig. 7d), suggesting that ΔT is more sensitive to dis-
tinguishing the thermoregulation difference between PFTs than
the slope indicator.

Drivers of spatial variations in plant thermoregulation

Our results from both EC and satellite measurements (Fig. 8a,b)
show that the eight abiotic and biotic factors, combined with
their interactions, jointly explain 53% or 61% of the spatial vari-
ability of ΔT, in which abiotic factors dominate, followed by bio-
tic factors and interaction terms. Specifically, three abiotic factors
are positively correlated with spatial variability of ΔT : PAR, ele-
vation, and RH; three are negatively correlated with ΔT : Ta,
wind speed, and precipitation. For the biotic factors, both LAI
and PFTs show significant relationships with ΔT. The interac-
tions between abiotic and biotic factors, including Ta × LAI,
PAR × LAI, precipitation × LAI, Ta × PFTs, and PAR ×
PFTs, also show significant relationships with ΔT (Table S2).

Meanwhile, our results (Fig. S14) from both EC and satellite
measurements show that the eight abiotic and biotic factors com-
bined with their interactions provide a low explanation for the
global regression slope variability (R2 = 0.26 for EC data and
R2 = 0.21 for satellite data).

Discussion

Do plants show thermoregulation at the temporal scale?

Whether plants can thermoregulate themselves to adapt to future
warming climates has received increasing attention over recent
years, but remains debated with views from no to moderate ther-
moregulation capabilities (Farella et al., 2022; Still et al., 2022).
To reconcile these seemingly contrasting views, we assessed the
extent to which the ‘limited homeothermy’ hypothesis holds
across various plant ecosystems. Our results show that there is
moderate variation in regression slopes of Tc vs Ta across global

Fig. 2 Temporal-scale regressions of canopy temperature (Tc) vs air temperature (Ta) across daily, weekly, and monthly timescales using EC data. (a–c) Fit-
ted results of Tc vs Ta derived from data across all available sites (n = 144). (d–f) Fitted results of Tc vs Ta for each EC site, where each gray line corresponds
to each site. Histograms indicate frequency distributions of regression slope and R2, the blue dashed line is the slope = 0.9, and the number is the percent
of slope > 0.9.

New Phytologist (2023) 238: 1004–1018
www.newphytologist.com

� 2022 The Authors

New Phytologist� 2022 New Phytologist Foundation

Research

New
Phytologist1010

 14698137, 2023, 3, D
ow

nloaded from
 https://nph.onlinelibrary.w

iley.com
/doi/10.1111/nph.18632, W

iley O
nline L

ibrary on [18/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



vegetated sites/areas, regardless of the timescales (from daily to
weekly and monthly) examined, or the data (EC vs satellite) used
(Figs 1–3). These results suggest that the plant thermoregulation
patterns are diverse across global vegetated sites/areas, ranging
from limited homeothermy (slope < 0.9) to poikilothermy
(slope: 0.9–1.1) and megathermy (slope > 1.1), but the large
majority (c. 80%) of our data with slope > 0.9 indicate that poik-
ilothermy and megathermy are by far the dominant patterns.
Furthermore, this may suggest that divergent conclusions (no vs
moderate thermoregulation capacities) from prior studies may
not be incompatible and are likely because different studies were
conducted in different biomes and under different biotic and abi-
otic conditions.

After testing the ‘limited homeothermy’ hypothesis across glo-
bal extratropics, we next explored whether its opposites (slope <
1 or Tc < Ta at midday) are the same as no thermoregulation
capability as interpreted previously (Cavaleri, 2020). To this end,
we explored seasonal fluctuations of ΔT, and assessed their partial
correlations with LAI phenology. The hypothesis here is that if
there is little-to-no thermoregulation capability at the temporal
scale, we would expect random fluctuations of ΔT across the sea-
son. By contrast, our results show that there are considerable sea-
sonal dynamics in ΔT that tightly follow climate seasonality and/
or LAI dynamics (Fig. S10). Further analysis shows that when
removing the effect associated with site-specific climate seasonal-
ity, we observed 84% of EC sites showing significant negative
impacts of LAI in regulating ΔT seasonality (Figs 4, S10, S15),

including those sites with slopes ≥ 1. In other words, even when
the slope is ≥ 1, plants are not as ‘cold-blood’ as interpreted pre-
viously. In addition to the regression slope, midday ΔT was also
used for hypothesis testing. Contrasting to the expectation, over
96% of global extratropical ecosystems display positive values of
midday ΔT, rejecting the hypothesis. Such observed positive
midday ΔT results from the interactive consequence of high solar
radiation and plant thermoregulation (Blonder et al., 2020; Still
et al., 2021; Guo et al., 2022), which was further confirmed by
the process modeling results. Specifically, our results from the
BESS model show that the soil with no thermoregulation capa-
bility exhibits a much higher positive ΔT than plants (Fig. 5),
supporting the occurrence of plant thermoregulation even when
Tc > Ta around midday. The slope indicator together with ΔT
depicts a more comprehensive picture of plant thermoregulation
occurrence and strategies.

The finding of significant correlations between the seasonali-
ties in ΔT, climate, and LAI (Fig. 4) also sheds critical insights
into the processes and mechanisms underlying plant thermoregu-
lation. First, consistent with previous empirical and modeling
studies (Campbell & Norman, 2012; Jones, 2013; Perera et al.,
2019), our results show that Ta is the first-order control of tem-
poral variability in Tc and explains c. 90% of its variation. When
minimizing the influence of background Ta and focusing on the
seasonal dynamics in ΔT, other climatic variables, such as PAR,
wind speed, and RH (Fig. S10), start to exhibit their roles in
influencing ΔT seasonality. Thus, ΔT is a more sensitive

Fig. 3 Temporal regressions of canopy temperature (Tc) vs air temperature (Ta) at 8-d timescales using satellite (or RS) data. (a) Fitted result of Tc vs Ta from
dense vegetated satellite pixels (defined by vegetation cover > 95% and leaf area index > 2.0 m2 m−2, see details in ‘Canopy temperature (Tc)’ in the
Materials and Methods section); (b) slope (unitless) of Tc vs Ta; (c) R

2 (unitless) of Tc vs Ta. The red dashed line is the slope = 0.9, and the number is the
percent of slope > 0.9.
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indicator to detect temporal variability of plant thermoregulation
than raw Tc.

What are the mechanisms underlying large spatial variation
in plant thermoregulation capability?

Our results from both EC and satellite measurements consis-
tently demonstrate large variations in plant thermoregulation
capability (indicated by ΔT) across PFTs, following the descend-
ing order of ΔT (ascending thermoregulation capability): grass-
land, shrubland, savanna, cropland, and forest (Fig. 7). Such
observations are also consistent with many previous findings
respectively made using EC (Duman et al., 2021; Javadian et al.,
2022), proximate remote sensing (Still et al., 2021; Yang et al.,
2021), and satellite (Lian et al., 2017; Duveiller et al., 2018)
measurements. The widespread presence of ΔT variability further
suggests that the conventional approach of using Ta alone for
inferring Tc could produce large uncertainty.

However, challenges remain in understanding the relative role
of abiotic and biotic factors in driving large spatial variations in
ΔT. Therefore, we performed a holistic assessment to explore the
underlying biophysical mechanisms of ΔT variations. Our results
demonstrate that ΔT variability across global extratropics is
explained primarily by abiotic factors (24–38%) and secondarily

by biotic factors (14–15%; Fig. 8). This result is new as it is for
the first time explored here based on large-scale datasets. Our
findings also agree with fundamental ecophysiological and bio-
physical principles. For example, we observed Ta and RH as the
two important variables correlated with ΔT, which is because Ta

and RH jointly affect atmospheric VPD that shows direct con-
nections with stomatal conductance and canopy transpiration,
thus importantly regulating ΔT (Ahi et al., 2015; Medina et al.,
2019). We also observed a positive relationship of PAR-ΔT,
which is primarily because higher PAR means more solar radia-
tion absorbed by plant canopies, which could subsequently raise
Tc, causing a higher ΔT (Gates, 1965; Jones, 2013; Fauset et al.,
2018). In addition, we observed a significant, negative relation-
ship between elevation and ΔT. The underlying explanation
might be related to leaf size, which has been shown to decrease
with elevation, and the smaller leaf size often leads to an increase
in boundary layer conductance and thus a smaller ΔT at the
higher elevation (Wright et al., 2017; Guo et al., 2022).

Moreover, we used the PFT variable to approximate the factors
related to biotic regulations, as many global-scale studies have
shown that key physiological and morphological traits can vary
considerably across PFTs (Kattge et al., 2011; Anderegg et al.,
2021). We found that PFT indeed exerted a considerable role in
regulating ΔT variations (Figs 7, 8) as we hypothesized. Despite

Fig. 4 Temporal dynamics of canopy-to-air
temperature difference (ΔT) and its
relationship with the seasonality of leaf area
index (LAI). (a) Randomness test of temporal
ΔT for each eddy covariance (EC) site.
(b) Partial correlation analysis between the
seasonalities of LAI and ΔT for each EC site,
in which the influence of air temperature,
relative humidity, PAR, and wind speed was
controlled. (c, d) An example EC site (FR-
Fon: mixed forest) with a regression slope of
1.0, where ΔT seasonality follows a regular
pattern and is negatively partially correlated
with LAI. Temporal ΔT and LAI are smoothed
with a 10-d window.
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this, we also observed large ΔT variation within each PFT
(Fig. 7), which could largely be attributed to the insufficient
approximate of PFT for plant physiological traits, as many fine-
scale studies have documented large trait variations within the
same PFT (Kattge et al., 2011; Wu et al., 2019). These results
suggest that variations in key plant physiological and morpholog-
ical traits (e.g. leaf size, stomata slope, and maximum carboxyla-
tion rate, Guo et al., 2022) can largely affect plant

thermoregulation. Meanwhile, it also highlights that a compre-
hensive set of field-measured plant traits might play an even
greater role in interpreting the biotic regulation of ΔT than cur-
rently captured by the PFT variable used in this study.

Lastly, this study for the first time systematically compared the
performances of ΔT and slope as thermoregulation indicators on
a large scale, highlighting there would be condition-specific pref-
erence for each of the two thermoregulation indicators. For

Fig. 5 Comparison between simulated canopy temperature (Tc), air temperature (Ta), and soil temperature (Ts) from the Breathing Earth System Simulator
model. The input climate data are from three sites: (1) US-KS2 shrubland (mean of 2003–2007), (2) CH-Fru grassland (mean of 2008–2007), and (3)
AU-Tum forest (mean of 2008–2001). The input trait data are from Guo et al. (2022). The error bar indicates the 1.5× SD and refers to Tc variability
induced by the traits.

Fig. 6 Eddy covariance (EC)- and satellite-based canopy-to-air temperature differences (ΔT) across the global vegetated landscape. (a) Histogram of EC-
based ΔT. (b) Satellite-based ΔT (°C).
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example, as shown in Fig. 8, ΔT varies considerably across differ-
ent PFTs, but the slope indicator is indistinguishable (Fig. 8).
These findings thus suggest that ΔT could be a more suitable

metric for studying the influence of vegetation change, such as
deforestation or afforestation (Duveiller et al., 2018; Zeng et al.,
2021), on Tc and other associated ecophysiological processes, as
the ΔT indicator can easily distinguish the thermoregulation dif-
ference between different PFTs. On the contrary, the slope indi-
cator that quantifies the relative change speed between Tc and Ta

over time could be more insightful when projecting the thermal
response of plants to the future climate condition (Dong et al.,
2017; Blonder & Michaletz, 2018), but the long-term accurate
ground data are needed to verify this implication.

Caveats and future directions

Our work identifies three important caveats that require further
research. First is data uncertainty. Despite a vastly large spatial
coverage, Ta, Tc, and LAI measurements from reanalysis and
satellite products come with larger uncertainties than ground-
based observations (e.g. EC data or field-measured LAI). These
unavoidable uncertainties are results of the inherent bias in
reanalysis systems and the effect of sensor noises and unstable
atmospheric conditions in satellite-based retrievals (Wan, 2014;
Parker, 2016; Muñoz-Sabater et al., 2021). Additionally, due to
the coarse resolution, Tc from satellite or EC cannot eliminate
interference from nonleaf information, such as branches and
trunks (Farella et al., 2022). Furthermore, both EC- and satellite-
derived Tc mainly reflect the dynamics of the upper canopies and
rarely reflect the Tc of middle canopies or understory (Still et al.,
2021). Despite these limitations, our study has important impli-
cations for ecology, since upper canopies contribute a very large

Fig. 7 Canopy-to-air temperature difference (ΔT) and slope indicator
(weekly timescale) grouped by plant functional types (PFTs). (a) Eddy
covariance (EC)-based ΔT; (b) satellite-based ΔT; (c) EC-based slope indi-
cator; (d) satellite-based slope indicator. BF, broadleaved forest; CRO,
cropland; GRA, grassland; MF, mixed forest; NF, needle-leaved forest;
SAV, savanna; SHR, shrubland. Error bar indicates 1.5× SD.

Fig. 8 Relative importance of the eight selected abiotic and biotic factors for explaining global variability in the original canopy-to-air temperature differ-
ence (ΔT). (a) Eddy covariance-based results. (b) Satellite-based results. In both figures, the circle is the mean value, and the error bar indicates 1.5× SD.
The relative effect is calculated based on standardized variables. LAI, leaf area index; P, precipitation; PAR, photosynthetically active radiation; PFTs, plant
functional types; RH, relative humidity; Ta, air temperature; u, wind speed. *, P < 0.05; **, P < 0.01; ***, P < 0.001.
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amount of carbon and water fluxes compared with the middle
canopy and understory (Ellsworth & Reich, 1993). Other impor-
tant physiological and morphological traits, such as leaf size and
stomatal slope, shown to be tightly linked to ΔT (Guo et al.,
2022), were not explored due to data limitations. Future
attempts that leverage detailed traits by field measurements (e.g.
Blonder et al., 2020; Yan et al., 2021) or imaging spectroscopy
techniques (Kattenborn et al., 2019; Wu et al., 2021) are needed
to comprehensively assess the role of these important biotic com-
ponents in plant thermoregulation.

Second, our current exploration of the biophysical mechanisms
underlying plant thermoregulation is based on a generalized linear
model. This approach served well for our work, but is not process-
based (Garcı́a-Palacios et al., 2018), thus cannot be directly imple-
mented in large-scale process-based models (e.g. terrestrial bio-
sphere models, TBMs) for simulating Tc and associated key
ecophysiological processes (Ryu et al., 2011). Thus, an important
next step is leveraging detailed field measurements to first evaluate
TBMs and see whether the mechanisms revealed in this paper hold
in the TBMs and then assess the potential impacts of with/without
thermoregulation-related mechanisms on larger scale simulations
of ecosystem responses to climate change.

Finally, our EC- and satellite-based findings of the magnitude
of day-time ΔT variation (0–6°C) and associated underlying bio-
tic importance (15–25%) are smaller than previous observations
made on the leaf and canopy scale (Ehleringer et al., 1976; Smith
& Carter, 1988; Guo et al., 2022). This can be caused by the
effect of canopy structure (e.g. self-shading and canopy gaps) and
microclimate, but has not been explored comprehensively (Pau
et al., 2018; Javadian et al., 2022). Thus, it is reasonable to expect
that there are scale-dependent mechanisms in regulating plant
thermoregulation capability. In future attempts, a holistic set of
measurements covering scales from single leaves to plant canopies
and ecosystems remain needed to reveal more detailed scale-
dependent mechanisms and improve the understanding of
diverse plant thermoregulation strategies across various scales.

Conclusion

In this study, we tested the limited homeothermy hypothesis for
various plant ecosystems across space and time, and explored the
drivers of large-scale plant thermoregulation variability. Tempo-
rally, our results show that c. 90% of the slope indicators vary from
0.7 to 1.3, suggesting that diverse thermoregulation strategies
occur for plants globally. While, even for the poikilothermic or
megathermy sites, their ΔT exhibits regular seasonal variations,
which show negative, partial correlations with canopy structure
dynamic. Spatially, our results show that midday ΔT exhibits large
variations across global extratropics and almost all values are posi-
tive, which contradicts the ‘homeothermic cooling’ at higher tem-
peratures as originally proposed by Mahan & Upchurch (1988).
These results suggest slope < 1 or Tc < Ta at midday are not nec-
essary conditions for plant thermoregulation, as thermoregulation
still occurs in their opposite (i.e. slope ≥ 1 or Tc > Ta). Further-
more, we found that abiotic and biotic drivers (Ta, PAR, RH, ele-
vation, precipitation, wind speed, LAI, and PFTs), combined with

the interaction terms, jointly explained 53–61% of large spatial-
wide ΔT variations across global extratropics (Fig. 8), among
which abiotic factors dominated. These results altogether thus
improve our understanding of plant thermoregulation occurrence
and capability across both space and time, highlighting the funda-
mental biophysical mechanisms underlying diverse plant ther-
moregulation strategies around the world.
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Data availability

FLUXNET 2015 data are available at https://fluxnet.org/data/
fluxnet2015-dataset/subset-data-product/, the MODIS LST data
are available at https://lpdaac.usgs.gov/products/myd11a2v006/
and https://lpdaac.usgs.gov/products/mod11a2v006/, the MODIS
emissivity data are available at https://lpdaac.usgs.gov/products/
mod21a2v006/, the ESA-worldcover data are available at https://
viewer.esa-worldcover.org/worldcover/, the MODIS IGBP map is
available at https://lpdaac.usgs.gov/products/mcd12q1v006/, the
MODIS phenology data (i.e. SOS and EOS) are available at
https://lpdaac.usgs.gov/products/mcd12q2v006/, the MODIS LAI
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data are available at https://lpdaac.usgs.gov/products/mcd15
a3hv006/, the ERA5_Land data are available at https://www.
ecmwf.int/en/era5-land, and the water body coverage data are
available at https://global-surface-water.appspot.com/download.
The codes for the analyses are available at https://github.com/
guozhengfei/Global-thermoregulation-evaluation.
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Muñoz-Sabater J, Dutra E, Agustı́-Panareda A, Albergel C, Arduini G, Balsamo

G, Boussetta S, Choulga M, Harrigan S, Hersbach H. 2021. ERA5-land: a

state-of-the-art global reanalysis dataset for land applications. Earth System
Science Data 13: 4349–4383.

Myneni R, Knyazikhin Y, Park T. 2015.MCD15A3H MODIS/Terra+ aqua leaf
area index/FPAR 4-day L4 global 500 m SIN Grid V006 [data set]. Missoula,

MT, USA: NASA EOSDIS Land Processes DAAC.

Novick KA, Ficklin DL, Stoy PC, Williams CA, Bohrer G, Oishi AC, Papuga

SA, Blanken PD, Noormets A, Sulman BN. 2016. The increasing importance

of atmospheric demand for ecosystem water and carbon fluxes. Nature Climate
Change 6: 1023–1027.

Parker WS. 2016. Reanalyses and observations: what’s the difference? Bulletin of
the American Meteorological Society 97: 1565–1572.

Pastorello G, Trotta C, Canfora E, Chu H, Christianson D, Cheah YW,

Poindexter C, Chen J, Elbashandy A, Humphrey M et al. 2020. The
FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy

covariance data. Scientific Data 7: 225.
Pau S, Detto M, Kim Y, Still CJ. 2018. Tropical forest temperature thresholds

for gross primary productivity. Ecosphere 9: e02311.
Pekel JF, Cottam A, Gorelick N, Belward AS. 2016.High-resolution mapping of

global surface water and its long-term changes. Nature 540: 418–422.
Peng SS, Piao S, Zeng Z, Ciais P, Zhou L, Li LZ, Myneni RB, Yin Y, Zeng H.

2014. Afforestation in China cools local land surface temperature. Proceedings
of the National Academy of Sciences, USA 111: 2915–2919.

Perera RS, Cullen BR, Eckard RJ. 2019. Using leaf temperature to improve

simulation of heat and drought stresses in a biophysical model. Plants 9: 8.
Poulter B, MacBean N, Hartley A, Khlystova I, Arino O, Betts R, Bontemps S,

Boettcher M, Brockmann C, Defourny P. 2015. Plant functional type

classification for earth system models: results from the European Space

Agency’s Land Cover Climate Change Initiative. Geoscientific Model
Development 8: 2315–2328.

Ryu Y, Baldocchi DD, Kobayashi H, Van Ingen C, Li J, Black TA, Beringer J,

Van Gorsel E, Knohl A, Law BE. 2011. Integration of MODIS land and

atmosphere products with a coupled-process model to estimate gross primary

productivity and evapotranspiration from 1 km to global scales. Global
Biogeochemical Cycles 25: 4.

Sadok W, Jagadish SK. 2020. The hidden costs of nighttime warming on yields.

Trends in Plant Science 25: 644–651.
Slot M, Winter K. 2017. In situ temperature response of photosynthesis of 42

tree and liana species in the canopy of two Panamanian lowland tropical forests

with contrasting rainfall regimes. New Phytologist 214: 1103–1117.
Smith WK, Carter GA. 1988. Shoot structural effects on needle

temperatures and photosynthesis in conifers. American Journal of Botany
75: 496–500.

Still C, Powell R, Aubrecht D, Kim Y, Helliker B, Roberts D, Richardson AD,

Goulden M. 2019. Thermal imaging in plant and ecosystem ecology:

applications and challenges. Ecosphere 10: e02768.
Still CJ, Page G, Rastogi B, Griffith DM, Aubrecht DM, Kim Y, Burns SP,

Hanson CV, Kwon H, Hawkins L et al. 2022. No evidence of canopy-scale

leaf thermoregulation to cool leaves below air temperature across a range of

forest ecosystems. Proceedings of the National Academy of Sciences, USA 119:

e2205682119.

Still CJ, Rastogi B, Page GF, Griffith DM, Sibley A, Schulze M, Hawkins L,

Pau S, Detto M, Helliker BR. 2021. Imaging canopy temperature: shedding

(thermal) light on ecosystem processes. New Phytologist 230: 1746–1753.
Thakur S, Maity D, Mondal I, Basumatary G, Ghosh PB, Das P, De TK. 2021.

Assessment of changes in land use, land cover, and land surface temperature in

the mangrove forest of Sundarbans, northeast coast of India. Environment,
Development and Sustainability 23: 1917–1943.

Wan Z. 2014. New refinements and validation of the collection-6 MODIS land-

surface temperature/emissivity product. Remote Sensing of Environment 140: 36–45.
Wang L, Lu Y, Yao Y. 2019. Comparison of three algorithms for the retrieval of

land surface temperature from Landsat 8 images. Sensors 19: 5049.
Wright IJ, Dong N, Maire V, Prentice IC, Westoby M, Dı́az S, Gallagher RV,

Jacobs BF, Kooyman R, Law EA. 2017. Global climatic drivers of leaf size.

Science 357: 917–921.
Wu J, Rogers A, Albert LP, Ely K, Prohaska N, Wolfe BT, Oliveira RC Jr,

Saleska SR, Serbin SP. 2019. Leaf reflectance spectroscopy captures variation

in carboxylation capacity across species, canopy environment and leaf age in

lowland moist tropical forests. New Phytologist 224: 663–674.
Wu S, Wang J, Yan Z, Song G, Chen Y, Ma Q, Deng M, Wu Y, Zhao Y, Guo

Z. 2021.Monitoring tree-crown scale autumn leaf phenology in a temperate

forest with an integration of PlanetScope and drone remote sensing

observations. ISPRS Journal of Photogrammetry and Remote Sensing 171: 36–48.
Yan Z, Guo Z, Serbin SP, Song G, Zhao Y, Chen Y, Wu S, Wang J, Wang X, Li J.

2021. Spectroscopy outperforms leaf trait relationships for predicting

photosynthetic capacity across different forest types. New Phytologist 232: 134–147.
Yang D, Morrison BD, Hantson W, Breen AL, McMahon A, Li Q, Salmon VG,

Hayes DJ, Serbin SP. 2021. Landscape-scale characterization of Arctic tundra

vegetation composition, structure, and function with a multi-sensor

unoccupied aerial system. Environmental Research Letters 16: 85005.
Zanaga D, Van De Kerchove R, De Keersmaecker W, Souverijns N,

Brockmann C, Quast R, Wevers J, Grosu A, Paccini A, Vergnaud S

et al. 2021. ESA WorldCover 10 m 2020 v100. Zenodo. doi: 10.5281/
zenodo.5571936.

Zeng Z, Piao S, Li LZ, Zhou L, Ciais P, Wang T, Li Y, Lian XU, Wood EF,

Friedlingstein P. 2017. Climate mitigation from vegetation biophysical

feedbacks during the past three decades. Nature Climate Change 7: 432–436.
Zeng Z, Wang D, Yang L, Wu J, Ziegler AD, Liu M, Ciais P, Searchinger TD,

Yang ZL, Chen D. 2021. Deforestation-induced warming over tropical

mountain regions regulated by elevation. Nature Geoscience 14: 23–29.
Zhou D, Xiao J, Frolking S, Liu S, Zhang L, Cui Y, Zhou G. 2021. Croplands

intensify regional and global warming according to satellite observations.

Remote Sensing of Environment 264: 112585.
Zhu Z, Piao S, Myneni RB, Huang M, Zeng Z, Canadell JG, Ciais P, Sitch S,

Friedlingstein P, Arneth A. 2016. Greening of the Earth and its drivers. Nature
Climate Change 6: 791–795.

Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM. 2009.Mixed effects models
and extensions in ecology with R, vol. 574. New York, NY, USA: Springer.

Supporting Information

Additional Supporting Information may be found online in the
Supporting Information section at the end of the article.

Fig. S1 Conceptual diagram of the plant thermoregulation (cf
fig. 1 of Drake et al., 2020).

Fig. S2 Comparison between eddy covariance (EC)- and satel-
lite-derived canopy temperature (Tc).

Fig. S3 Percentage data availability of Moderate Resolution
Imaging Spectroradiometer (MODIS) land surface temperature
(LST) satellite data (MYD11A2) on a global scale.

Fig. S4 Relationship between two indicators (slope and ΔT) of
the canopy temperature (Tc) vs air temperature (Ta) relationship
across 22 tropical flux sites.

Fig. S5 Workflow for studying the spatial and temporal variabil-
ity of plant thermoregulation and its drivers on a global scale.
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Fig. S6 Original and partial relationships between canopy-to-air
temperature difference (ΔT) and leaf area index (LAI).

Fig. S7 Sensitivity analysis to evaluate the influence of different
leaf area index (LAI) thresholds on the assessments of satellite-
based canopy temperature (Tc) vs air temperature (Ta) relation-
ships.

Fig. S8 Cross-comparison between aerodynamic canopy temper-
ature (Tc_aero) and longwave canopy temperature (Tc_LW) across
94 eddy covariance (EC) sites.

Fig. S9 Mean passing times for Moderate Resolution Imaging
Spectroradiometer (MODIS) Terra and Aqua satellite.

Fig. S10 Examples of temporal ΔT, LAI, PAR, RH, rainfall,
and wind speed across the growing season in the AU-Wac
forest site. ΔT, canopy-to-air temperature difference; LAI,
leaf area index; PAR, photosynthetically active radiation; RH,
relative humidity.

Fig. S11 Correlations among different explanatory variables.

Fig. S12 The residual patterns for the generalized linear model
results (i.e. modeled Tc – observed Tc) based on eddy covariance
(EC) data. Tc, canopy temperature.

Fig. S13 The residual patterns for the generalized linear model
results (i.e. modeled Tc–observed Tc) based on satellite data. Tc,
canopy temperature.

Fig. S14 Relative importance of the eight selected abiotic and
biotic factors for explaining the global variability in the slope
indicator of canopy temperature (Tc) vs air temperature (Ta)
regression.

Fig. S15 Relationship between evapotranspiration (ET), canopy-
to-air temperature difference (ΔT), and leaf area index (LAI).

Methods S1 Introduction of FLUXNET 2015, satellite, and
ERA5-Land (ERA5L) reanalysis data.

Methods S2 Removing the evapotranspiration (ET) effect from
canopy-to-air temperature difference (ΔT) vs leaf area index
(LAI) relationship.

Table S1 Cross-comparing different versions of generalized lin-
ear models of plant thermoregulation capacities (canopy-to-air
temperature difference, ΔT) based on the Akaike information cri-
terion (AIC) metric.

Table S2 Relative importance of each driver for explaining the
global variability in canopy-to-air temperature difference (ΔT)
based on the best generalized linear model (that was selected
based on the smallest Akaike information criterion (AIC) values
shown in Table S1).

Please note: Wiley is not responsible for the content or function-
ality of any Supporting Information supplied by the authors. Any
queries (other than missing material) should be directed to the
New Phytologist Central Office.

See also the Commentary on this article by Drake, 238: 921–923.
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